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ABSTRACT
Halpern and Pass [8] introduce a logic of justified belief and
go on to prove that strong rationalizability is characterized
in this logic in terms of common justified belief of rationality
(CJBR). Their paper provides semantics for this logic but no
axiomatization. We correct this deficiency by reformulating
the definition of justified belief and providing a complete
axiomatization of this new system. We then prove a result
analogous to the characterization of strong rationalizability
in terms of CJBR, and analyze the additional assumptions
needed to do so.

Categories and Subject Descriptors
F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—modal logic; I.2.11 [Artificial Intelli-
gence]: Distributed Artificial Intelligence—multiagent sys-
tems; J.4 [Social and Behavioral Sciences]: Economics

General Terms
Economics, Theory

Keywords
Epistemic logic, rationality, justified belief

1. INTRODUCTION
One of the best known solution concepts in game theory

is rationalizability [9]. Roughly speaking, a strategy σ for
player i is rationalizable if σ is a best response to some belief
of player i about the strategies of the other players, under
the assumption that these strategies too are rationalizable
(so are themselves best responses to players’ beliefs, and so
on). As shown by Tan and Werlang [11] and Brandenburger
and Dekel [3], a strategy is rationalizable if and only if it can
be played at a state where rationality is common knowledge.

However, it is known that there is a sense in which ra-
tionalizability is too permissive. For example, in the well-
known centipede game [10], viewed as a normal-form game,
every strategy is rationalizable, despite a backward induc-
tion argument that yields a unique course of action for the

∗A full version of this paper is available at
www.cs.cornell.edu/home/halpern/papers/tark11.pdf.

ACM COPYRIGHT NOTICE. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to re-
publish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Publications
Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.
TARK 2011, July 12-14, 2011, Groningen, The Netherlands.
Copyright c©2011 ACM. ISBN 978-1-4503-0707-9, $10.00.

starting player: quitting immediately.1

The culprit here seems to be that the two players may have
“incompatible” beliefs. If the second player (Bob) believes
the first player (Alice) will quit immediately (i.e. if Bob as-
signs probability 1 to that event), then it is easily seen that
Bob can rationalize any strategy, since what he does has no
influence on the outcome. But if Bob can rationalize any
strategy, then so can Alice; for example, if Bob chooses to
quit at round 4 (believing that Alice will quit at round 1),
then Alice can rationalize quitting at round 3. A key obser-
vation in this example is that while Alice assigns probability
1 to the event“Alice quits at round 3”, Bob assigns this same
event probability 0.

This suggests that a strengthening of the notion of ratio-
nalizability might be fruitful and, moreover, that the miss-
ing component is some sort of “compatibility” condition on
the players’ beliefs. This strengthening is realized in the
definition of strong rationalizability given by Halpern and
Pass [8] (HP from now on). Roughly speaking, a strategy
is strongly rationalizable if it is rationalizable using beliefs
that are compatible, in the sense that if one player assigns
positive probability to a strategy profile, then all players as-
sign positive probability to it. HP show that in the centipede
game, the only strategy profiles that are strongly rational-
izable are ones where Alice quits right away.

HP analyze strong rationalizability from a modal perspec-
tive, using a logic that includes distinct modal operators for
belief and justified belief. Among other things, they show
that common justified belief of rationality (CJBR) charac-
terizes strongly rationalizable strategies. Roughly speaking,
according to the HP definition, player i has justified belief in
ϕ at a state ω, denoted ω |= B∗i ϕ, if (a) the player believes
ϕ (that is, he assigns ϕ probability 1), and (b) his proba-
bility distribution gives ω positive probability. The problem
with this definition is that at a state ω that is not given
positive probability, the player cannot have justified belief
of anything; even B∗i true does not hold. To deal with this,
HP take B∗i ϕ to be true at ω if either the player believes ϕ
and gives ω positive probability, or ϕ is valid.

While this approach does ensure that B∗i true holds at ev-
ery state, and does suffice to allow HP to characterize strong

1Recall that in the centipede game two players take turns
moving; at each move before the end, they can either quit
the game or continue (the player who moves at the last step
can only quit). For all steps t before the end, the player
that moves at t prefers the outcome of stopping at round t
to the outcome of stopping at round t+ 1. However, for all
t, stopping in round t+2 leads to a better outcome for both
players than stopping in round t.



rationalizability in terms of CJBR, it seems somewhat ad
hoc. Moreover, the HP definition proves difficult to gener-
alize or adapt to differing intuitions. For example, it seems
reasonable to require that a player has justified belief of his
own beliefs, but there is no natural way to incorporate this
requirement into the definition short of simply imposing it
as a third disjunct.

We provide here a reformulation of the logic of justified
belief that, while remaining true to the original intent, is a
more natural object of study. For example, it allows us to
naturally capture the requirement that players have justified
belief of their own beliefs. Further evidence of the natural-
ness of our approach is provided by a straightforward sound
and complete axiomatization of the logic, a feature lacking
in [8].

Our reformulation is based on the idea of a logic that in-
cludes, in addition to an epistemic belief modality Bi, an
alethic modality 2i (that lets us talk about logical neces-
sity and possibility); B∗i is defined as the conjunction of Bi
and 2i. This idea is somewhat reminiscent of an approach
taken by Artemov and Nogin [2], who have also considered
adding justification to epistemic logic. They do so by use of
“justification terms” of the form t :ϕ. The formula t :ϕ says
that t is an explicit witness (perhaps a proof) that ϕ is true.
The formula also has an epistemic component. The implicit
assumption is that an agent who has a proof understands
that he has a proof, so that the implication (t : ϕ) ⇒ Bϕ
holds. No such implication holds for our 2i modality. B∗i ϕ
is perhaps best thought of as “exists t such that t :iϕ holds”
(where t :i ϕ says that “agent i has a justification t for ϕ”).
(Artemov [1] and Fitting [5] have considered translating for-
mulas with explicit justifications into a simple modal logic
with a 2 operator by replacing each term of the form t :ϕ
by 2ϕ.) It would be interesting to see if there are axioms on
justification that would allow us to reproduce the properties
of B∗i using this approach, although doing so is beyond the
scope of this paper.

Our new approach does have a downside: it is no longer
the case in general that CJBR characterizes strong ratio-
nalizability in all structures. But this failing can be miti-
gated: we can identify exactly which additional properties
are needed in a structure to recover the characterization.
This leads to a deeper understanding of both justified belief
and strong rationalizability.

The rest of the paper is organized as follows. In the next
section we review the semantics of the HP notion of justified
belief and discuss the shortcomings of this approach. In Sec-
tion 3 we motivate, define, and completely axiomatize a new
formulation of justified belief; we then analyze some of its
fundamental properties. The discussion in Sections 2 and 3
is carried out in a general logical setting. In Section 4, we
specialize the setting to games, expanding the language to
include formulas for strategies and rationality; we then pro-
vide a sound and complete axiomatization. Thus, perhaps
surprisingly, we can reason about rationality in a qualita-
tive language that can talk only about beliefs, rather than
probability and utility. In Section 5, we characterize the key
properties of justified belief needed to prove the character-
ization of strong rationalizability in terms of CJBR. This
turns out to require extra “richness” requirements; Section 6
is therefore devoted to exploring some of the consequences
of these additional requirements, how they might be viewed
in a wider context, and directions for future research.

2. THE HALPERN-PASS DEFINITION OF
JUSTIFIED BELIEF

We begin by establishing a basic logical setting in which
the justified belief operator may be defined.

Let LBn (Φ) denote the language that has primitive propo-
sitions in Φ, and is closed under the standard Boolean con-
nectives as well as the modal operators Bi (“player i believes
that”), for 1 ≤ i ≤ n. (As usual, we omit Φ and write just
LBn when Φ is not relevant.) We use Kripke-style semantics,
where associated to each state ω and each player i is a proba-
bility measure on the state space, thought of as representing
player i’s beliefs at ω. Formally, a probability frame is a tuple
(Ω,PR1, . . . ,PRn) satisfying the following conditions:

(P1) Ω is a nonempty topological space;

(P2) each PRi assigns to each ω ∈ Ω a probability measure
PRi(ω) on Ω;

(P3) ω′ ∈ PRi[ω] ⇒ PRi(ω′) = PRi(ω), where PRi[ω]
abbreviates Supp(PRi(ω)), the support of the proba-
bility measure.

Condition (P3) ensures that each player is sure of his own
beliefs. The topological structure on Ω is necessary to make
sense of the probability measures, which are implicitly taken
to be defined on the Borel subsets of Ω. For simplicity, in this
abstract, we will restrict our attention to finite state spaces
with the discrete topology, in which case all subsets of Ω are
measurable, so we can suppress mention of the topological
structure altogether. In the full paper, we extend our results
to infinite state spaces.

A probability structure M is a probability frame together
with a valuation function [[·]]M : Φ → 2Ω. This valuation is
extended to all formulas recursively via:

[[ϕ ∧ ψ]]M =def [[ϕ]]M ∩ [[ψ]]M
[[¬ϕ]]M =def Ω− [[ϕ]]M
[[Biϕ]]M =def {ω ∈ Ω : PRi[ω] ⊆ [[ϕ]]M}.

Thus, the Boolean connectives are interpreted classically,
while the formula Biϕ holds at all states ω such that PRi(ω)
assigns probability 1 to ϕ. As is standard, we often write
(M,ω) |= ϕ or just ω |= ϕ for ω ∈ [[ϕ]]M ; similarly, we write
M |= ϕ for [[ϕ]]M = Ω; and we say that ϕ is valid, and write
|= ϕ, if M |= ϕ for all probability structures M . When
(M,ω) 6|= ϕ, we say that M refutes ϕ at ω, or just that ω
refutes ϕ.

The goal now is to introduce a second unary modal oper-
ator for each player, B∗i , to be interpreted in some sense as
“justified belief”. As a first attempt at providing semantics
for this operator, consider:

ω |= B∗i ϕ⇔ ω |= Biϕ and ω ∈ PRi[ω].

This is meant to capture the intuition that a justified be-
lief should never rule out something which might, in fact,
obtain; to put the same point evidentially, one cannot justi-
fiably discount anything that one has not observed evidence
against. In particular, then, a justified belief must include
the actual state in its support.

These semantics for B∗i , however, yield a non-normal op-
erator, since B∗i need not hold even of valid formulas: at any
state ω with ω /∈ PRi[ω], B∗i ϕ fails for all ϕ. This motivates
changing the semantics for B∗i to

ω |= B∗i ϕ ⇔
(a) ω |= Biϕ and ω ∈ PRi[ω], or
(b) ϕ is valid,



which is precisely the HP definition.
This solves one problem but creates another: axiomatizing

B∗i now seems to require an ability to express “is valid” in
the object language, since the formula

B∗i ϕ⇒ (Biψ ⇒ ψ) (1)

is valid for all and only refutable ϕ. Thus, it seems that in
order to axiomatize B∗i we need to reason about satisfiabil-
ity and validity. While this can be done [6], it seems not to
get at the essence of justified belief. It can also be argued
that a player ought to have justified belief in his own beliefs
at all states, not just those which lie in the support of their
own probability measure. This can be captured by adding
a (rather ugly!) third disjunct to an already ad hoc defini-
tion, but again, this does not seem to be a natural way to
go. This motivates the main goal of this paper: to present
an alternative approach to defining the B∗i operators that
resolves all of the issues raised above.

3. A NEW APPROACH TO JUSTIFIED BE-
LIEF

Returning to the language LBn , we begin, not with B∗i ,
but by introducing unary modal operators 2i for each player
i. The idea underlying this move stems from the intuition
for justified belief given above: that it should never rule
out a possibility that might obtain. The operators 2i are
intended to introduce the dimension of alethic modality that
the word “might” carries in this intuition. As such, we define
the symbols B∗i into our language via

B∗i ϕ =def Biϕ ∧ 2iϕ,

and henceforth take this as our definition of justified be-
lief. We might read 2iϕ as “necessarily ϕ” and, dually,
3iϕ =def ¬2i¬ϕ as “possibly ϕ” or “it might be the case
that ϕ”, though we shall see that these readings still require
refinement. Loosely speaking, then, we can read the above
as: “player i has justified belief in ϕ just in case player i
believes ϕ and, moreover, it is not the case that ¬ϕ might
obtain”. Call this new language LB,2n .

We no longer need to give semantics to B∗i directly, since
it will inherit its semantics from Bi and 2i. We let Ri[ω] de-
note {ω′ ∈ Ω : ωRiω

′}, and define a B∗-frame to be a tuple
(Ω,PR1, . . . ,PRn, R1, . . . , Rn) where (Ω,PR1, . . . ,PRn) is
a probability frame, and the following conditions hold:

(F1) each Ri is a reflexive, transitive relation on Ω;

(F2) ω′ ∈ PRi[ω]⇒ Ri[ω
′] ⊆ PRi[ω];

(F3) ωRiω
′ ⇒ PRi(ω′) = PRi(ω).

A B∗-frame (Ω,
−−→
PR,

−→
R ) is said to be based on the prob-

ability frame (Ω,
−−→
PR). Each Ri is called an accessibility

relation; we think of it as telling us which states are “possi-
ble” or “imaginable” from which other states, and condition
(F1) is standard in this respect. Condition (F2) expresses a
one-directional transparency between the alethic modality,
“it might be the case that” and its epistemic counterpart,
“it is considered possible that”; namely, no player considers
it possible that something might be true without also con-
sidering it possible that it is true. This may be considered
a “dictum of responsible imagining”2: if you consider some-
thing impossible, then you cannot imagine a world where it
2We thank Christina Bjorndahl for suggesting this phrasing.

is possible. Finally, condition (F3) expresses an additional
restriction on alethic possibility: that it is possibility condi-
tioned on the player’s actual beliefs. That is, any state that
is possible (from a given state) is a state in which the player’s
beliefs are the same (as in the given state). As we shall see,
it is (F3) that guarantees that an agent has justified beliefs
about his own beliefs.

We define a B∗-structure to be a B∗-frame together with
a valuation function as described above, extended by the
additional rule

[[2iϕ]]M =def {ω ∈ Ω : Ri[ω] ⊆ [[ϕ]]M}.

Thus, 2iϕ holds at a world ω if ϕ holds at all worlds that
are Ri-accessible from ω.

The following result shows that if B∗i ϕ holds according to
the HP definition, then it also holds according to our current
formulation.

Proposition 1. Let (Ω,
−−→
PR,

−→
R, [[·]]M ) be a B∗-structure.

For all ω ∈ Ω, each 1 ≤ i ≤ n, and any formula ϕ, if either

(a) ω |= Biϕ and ω ∈ PRi[ω], or

(b) [[ϕ]]M = Ω, or

(c) ϕ has the form Biψ or ¬Biψ and ω |= ϕ,

then ω |= B∗i ϕ.

Proof. First suppose that (a) holds. Clearly it suffices
to show that ω |= 2iϕ. Let ω′ ∈ Ω be such that ωRiω

′; then
condition (F2) ensures that ω′ ∈ PRi[ω], which implies ω′ |=
ϕ, thereby establishing ω |= 2iϕ. Case (b) is obvious. If (c)
holds, observe that by condition (P3) we have ω |= Biϕ, and
condition (F3) guarantees that ω |= 2iϕ. (This is true both
if ϕ has the form Biψ and if it has the form ¬Biψ.)

According to the HP definition, ω |= B∗i ϕ if either (a)
ω |= Biϕ and ω ∈ PRi[ω] or (b) ϕ is valid. Parts (a) and (b)
of Proposition 1 show that B∗i ϕ continues to hold in either of
these two cases under the new definition. Proposition 1(c)
shows that each player also has justified belief in his own
beliefs: both Biϕ⇒ B∗i Biϕ and ¬Biϕ⇒ B∗i ¬Biϕ are valid.
The proof of Proposition 1 shows that (F3) is crucial for
these properties.

As we now show, the logic has a straightfoward axioma-
tization with the Bi as KD45 operators, the 2i as S4 op-
erators, and two interaction axiom schemes which capture
conditions (F2) and (F3).

Axiom Schemes:

CPC. All tautologies of classical logic

KB. Bi(ϕ⇒ ψ)⇒ (Biϕ⇒ Biψ)
D. Biϕ⇒ ¬Bi¬ϕ
4B. Biϕ⇒ BiBiϕ
5. ¬Biϕ⇒ Bi¬Biϕ

K2. 2i(ϕ⇒ ψ)⇒ (2iϕ⇒ 2iψ)
T. 2iϕ⇒ ϕ
42. 2iϕ⇒ 2i2iϕ

I1. Biϕ⇒ Bi2iϕ
I2. 3iBiϕ⇒ 2iBiϕ



Rules of Inference:

MP. From ϕ⇒ ψ and ϕ infer ψ
NB. From ϕ infer Biϕ
N2. From ϕ infer 2iϕ

Let AXB∗ consist of the axioms and rules of inference above.

Theorem 1. AXB∗ is a sound and complete axiomati-
zation of the language LB,2n with respect to the class of all
B∗-structures.

Soundness is proved as usual, by induction on the length
of the deduction; in particular, condition (F2) guarantees I1
and (F3) guarantees I2, as is easily checked. Completeness
can be proved by the canonical model method. The (quite
standard) details are left to the full paper.

Since the B∗i operators are defined into our language, they
do not occur in the axiomatization AXB∗ . We catalogue
some of their properties here.

Proposition 2. The following formulas are valid:

(a) B∗i (ϕ⇒ ψ)⇒ (B∗i ϕ⇒ B∗i ψ);

(b) B∗i ϕ⇒ ϕ;

(c) B∗i ϕ⇒ B∗i B
∗
i ϕ;

(d) Biϕ⇒ BiB
∗
i ϕ.

Proof. Part (a) is a routine verification. Part (b) fol-
lows easily from the axiom scheme T. Part (c) follows from
the fact that Biϕ and 2iϕ together imply BiBiϕ, Bi2iϕ,
2iBiϕ, and 2i2iϕ, as witnessed by the axiom schemes 4B ,
I1, I2, and 42, respectively. Part (d) is perhaps best ob-
served by noting that if ω |= Biϕ and ω′ ∈ PRi[ω], then
ω′ |= Biϕ and ω′ ∈ PRi[ω′]; the result now follows by
Proposition 1(a).

The absence of a theorem corresponding to axiom 5, neg-
ative introspection for B∗i , is no accident. In fact, even the
weaker formula

¬B∗i ϕ⇒ Bi¬B∗i ϕ (2)

is not valid: if ω |= Biϕ ∧ ¬2iϕ, then certainly ω |= ¬B∗i ϕ.
However, Proposition 2(d) guarantees that ω |= BiB

∗
i ϕ,

which of course implies that ω 6|= Bi¬B∗i ϕ. It is worth not-
ing (and easy to check) that justified belief in the HP sense
also satisfies Proposition 2, and also fails to satisfy both
negative introspection and the weaker formulation given in
(2).

Having explored some of the syntactic properties of the
B∗i operators, we turn now to a closer examination of B∗-
structures; specifically, we are interested in the role that the
relations Ri play in determining the nature of justified be-
lief. For example, observe that the identity relation satisfies
conditions (F1) through (F3). If M is a B∗-structure in
which Ri is the identity, then M |= ϕ⇔ 2iϕ, and therefore
M |= B∗i ϕ⇔ (Biϕ ∧ ϕ). Thus, the notion of justified belief
we have defined subsumes the notion of true belief. More-
over, as is well known, Ri being the identity is characterized
syntactically by the axiom scheme

ϕ⇒ 2iϕ.

If we view the identity relation as the minimal relation
satisfying (F1) through (F3), then we are naturally led to
the investigation of a “maximal” such relation. This is a
notion that will play an important role for us in Section 5.

Given a probability frame (Ω,
−−→
PR), define the relations

Qi as follows: for all ω, ω′ ∈ Ω,

ωQiω
′ ⇔ (a) PRi(ω′) = PRi(ω), and

(b) ω ∈ PRi[ω]⇒ ω′ ∈ PRi[ω].
(3)

This definition ensures that ωQiω
′ holds whenever it does

not violate conditions (F2) or (F3); intuitively, this should
make the Qi “as big as possible”. This intuition is borne out
in the following proposition.

Proposition 3. The tuple (Ω,
−−→
PR, Q1, . . . , Qn) is a B∗-

frame. In fact, it is the unique B∗-frame based on the prob-

ability frame (Ω,
−−→
PR) in which each accessibility relation Qi

is maximal with respect to inclusion.

Proof. We first need to verify conditions (F1) through
(F3). It is immediate from the definition that each Qi is
reflexive, and transitivity is likewise straightforward; the re-
maining conditions are satisfied trivially by definition of the
Qi. Maximality and uniqueness are now evident.

A B∗-frame (Ω,
−−→
PR,

−→
R ) is called maximal if the relations

Ri are maximal in the sense of Proposition 3. Like mini-
mality, maximality can be characterized syntactically. Let
AXB∗

max be the system AXB∗ together with the following two
axiom schemes:

M1. 2iϕ⇒ Biϕ
M2. ϕ⇒ 2i((Biψ ∧ ¬ψ)⇒ 3iϕ)

M1 says that for each state ω, Ri[ω] ⊇ PRi[ω]. M2 is
perhaps best understood as an augmented version of the
standard axiom that characterizes symmetric relations Ri:
ϕ ⇒ 2i3iϕ. The formula Biψ ∧ ¬ψ cannot hold at any
state ω satisfying ω ∈ PRi[ω]; thus M2 says essentially
that ωRiω

′ implies ω′Riω whenever ω′ /∈ PRi[ω′].

Theorem 2. AXB∗
max is a sound and complete axiomati-

zation of the language LB,2n with respect to the class of all
maximal B∗-structures.

If M is a maximal B∗-structure, then Theorem 2 implies
that M |= B∗i ϕ⇔ 2iϕ. Loosely speaking, then, while at one
extreme our notion of justified belief collapses to (merely)
true belief, at the other extreme it is realized as full-fledged
necessity.

Up to now, we have not included common (justified) belief
in the language, so as to focus on the main issues involved in
defining justified belief. Common justified belief is needed
for the HP characterization of strong rationalizability, how-
ever, so we now add it to the language.

Let LCB
∗

n be the language that results from adding the
operators CB (common belief) and CB∗ (common justified
belief) to LB,2n and closing off under all the operators. To
give semantics to these new operators, we make use of the
following (standard) abbreviations

EB1ϕ =def B1ϕ ∧ · · · ∧Bnϕ
EBkϕ =def EB(EBk−1ϕ)
(EB∗)1ϕ =def B∗1ϕ ∧ · · · ∧B∗nϕ
(EB∗)kϕ =def EB∗((EB∗)k−1ϕ),



and we extend the valuation as follows:

[[CBϕ]]M =def

∞⋂
k=1

[[EBkϕ]]M

[[CB∗ϕ]]M =def

∞⋂
k=1

[[(EB∗)kϕ]]M .

Thus, as usual, common belief of ϕ means that everyone
believes that everyone believes . . . ϕ; common justified belief
is defined analogously.

The axioms for common belief and common justified be-
lief are just variants of the standard fixed-point axiom and
induction rule for common knowledge [4; 7].

Axiom Schemes:

FPACB. CBϕ⇒ EB(ϕ ∧ CBϕ)
FPACB∗ . CB∗ϕ⇒ EB∗(ϕ ∧ CB∗ϕ)

Rules of Inference:

IRCB. From ψ ⇒ EB(ϕ ∧ ψ) infer ψ ⇒ CBϕ
IRCB∗ . From ψ ⇒ EB∗(ϕ ∧ ψ) infer ψ ⇒ CB∗ϕ

Let AXCB∗ be the system that results from adding these
axioms and rules of inference to AXB∗ . Using standard tech-
niques [4; 7], we can prove the following result.

Theorem 3. AXCB∗ is a sound and complete axiomati-
zation of the language LCB

∗
n with respect to the class of all

B∗-structures.

4. STRUCTURES APPROPRIATE FOR
GAMES

We now want to apply justified belief to game theory, with
the goal of characterizing strong rationalizability by CJBR,
as in [8].

Fix a normal-form n-player game Γ, where Σi(Γ) denotes
the strategies of player i in Γ,

Σ(Γ) :=

n∏
i=1

Σi(Γ),

and

Σ−i(Γ) :=
∏
j 6=i

Σj(Γ).

To reason about players’ actions and rationality in Γ, fol-
lowing HP, we take ΦΓ to consist of the primitive proposi-
tions playi(σi) for σi ∈ Σi(Γ) (“player i is playing strategy
σi”) and RATi (“player i is rational”), and consider the lan-

guage LCB
∗

n (ΦΓ); to simplify notation, we write LCB
∗

n (Γ)

rather than LCB
∗

n (ΦΓ). We make use of the following syn-
tactic abbreviations:

RAT =def RAT1 ∧ · · · ∧RATn
play(−→σ ) =def play1(σ1) ∧ · · · ∧ playn(σn).

A structure appropriate for Γ (or a Γ-structure for short)
is essentially a B∗-structure that interprets these primitive
propositions appropriately. Formally, it is a tuple M =

(Ω, s,
−−→
PR,

−→
R ) where (Ω,

−−→
PR,

−→
R ) is a B∗-frame and s is a

strategy function that associates to each state ω ∈ Ω a pure
strategy profile s(ω) ∈ Σ(Γ) satisfying

(S1) PRi[ω] ⊆ [[si(ω)]]M ,

where si(ω) denotes player i’s strategy in the strategy profile
s(ω) and

[[σi]]M := {ω : si(ω) = σi}

(so [[si(ω)]]M = {ω′ : si(ω
′) = si(ω)}). Condition (S1) en-

sures that player i is sure of his own strategy. It is worth
noting that all Γ-structures also satisfy

(S2) Ri[ω] ⊆ [[si(ω)]]M ,

which shows that the alethic notion of possibility captured
by the relation Ri is possibility conditioned on player i’s
actual strategy. This parallels condition (F3), and ensures
that each player has justified belief not only of his own be-
liefs, but also of his own strategy. If we omit the relations
Ri, we obtain the HP definition of a probability structure
appropriate for Γ (or a probability Γ-structure for short).

The function s induces a valuation [[·]]M : Ω → 2Ω on
primitive propositions as follows:

[[playi(σi)]]M =def [[σi]]M
[[RATi]]M =def {ω ∈ Ω : si(ω) is a best

response given PRi(ω)},

where the notion of “best response” is determined in Γ ac-
cording to player i’s beliefs on the strategies of other players
induced by PRi(ω). More precisely, a probability measure
π on Ω induces a probability measure µ on Σ−i(Γ) via

µ(σ−i) = π([[σ−i]]M ),

where σ−i and [[σ−i]]M are defined in the obvious way. The
measure µ can then be combined with the utility function
given by the game Γ to generate a notion of “best response”
via expected utility.

We next provide axioms that characterize the interpre-
tation of playi(σi) and RATi in Γ-structures. Given S ⊆
Σ−i(Γ) and σ−i ∈ Σ−i(Γ), let

χS(σ−i) =def

{
¬Bi¬ play−i(σ−i) if σ−i ∈ S
Bi¬ play−i(σ−i) if σ−i /∈ S.

Axiom Schemes:

G1.
∨

σi∈Σi(Γ)

playi(σi)

G2. ¬
(
playi(σi) ∧ playi(σ′i)

)
, for σi 6= σ′i

G3. playi(σi)⇔ Bi playi(σi)

G4. RATi ⇔ Bi(RATi)

G5. (playi(σi) ∧ RATi) ⇒
∨
S∈Xσi

∧
σ−i∈Σ−i(Γ) χS(σ−i),

where Xσi is the set of all S ⊆ Σ−i(Γ) such that there
exists a probability measure µ on Σ−i(Γ) such that σi
is a best response to µ and Supp(µ) = S

G6. (playi(σi)∧¬RATi)⇒
∨
S∈Yσi

∧
σ−i∈Σ−i(Γ) χS(σ−i),

where Yσi is the set of all S ⊆ Σ−i(Γ) such that there
exists a probability measure µ on Σ−i(Γ) such that σi
is not a best response to µ and Supp(µ) = S.



G1–G4 are straightforward. G1 and G2 say that, in each
state, a player plays exactly one strategy; G3 and G4 say
that a player is certain of his strategy and of whether or not
he is rational. The interesting axioms are G5 and G6. In-
tuitively, G5 says that if RATi holds and player i is playing
σi, then player i must consider possible a collection of strat-
egy profiles on which he could put a probability that would
justify his playing σi. G6 is interpreted analogously. No-
tice that these axioms do not specify player i’s actual belief.
Nevertheless, they are all we need to get completeness.

Let AXCB∗(Γ) be the axiom system that results by adding

G1–G6 to AXCB∗ . For expository purposes, in this paper
we restrict our attention to finite Γ-structures.

Theorem 4. AXCB∗(Γ) is a sound and complete axiom-

atization of the language LCB
∗

n (Γ) with respect to the class
of all finite Γ-structures.

It is worth noting that this result can be extended to the
infinite case provided we take a little more care in defining
Γ-structures; more specifically, in the infinite case it becomes
important to insist that the strategy function respects the
topological structure of Ω.

5. CHARACTERIZING STRONG
RATIONALIZABILITY

A strategy σi for player i in game Γ is strongly rationaliz-
able if, for each player j, there is a set Zj ⊆ Σj(Γ) and, for
each strategy σ′j ∈ Zj , a probability measure µσ′j on Σ−j(Γ)

such that

(a) σi ∈ Zi,

(b) Supp(µσ′j ) ⊆ Z−j ,

(c) σ′j is a best response to (the beliefs) µσ′j , and

(d) for all players j, h and all strategy profiles −→σ ′ ∈ Z1 ×
· · · × Zn, if µσ′j (σ

′
−j) > 0, then µσ′

h
(σ′−h) > 0.

The standard definition of a rationalizable strategy can be
recovered by omitting the final condition. HP prove the
following theorem:

Theorem 5. A strategy σi for player i in a game Γ is
strongly rationalizable if and only if there exists a finite prob-
ability structure M appropriate for Γ and a state ω such that
si(ω) = σi and (M,ω) |= CB∗(RAT ).

Of course, this theorem is proved in their paper using their
version of justified belief. We seek a version of this result
that holds in our logical setting. Two obstacles arise, each
stemming from the fact that the implication

ω |= B∗i ϕ⇒ ω ∈ PRi[ω] (4)

is licensed according to the HP definition of B∗i , provided ϕ
is not valid, but it is not licensed according to our definition
of B∗i , even for refutable ϕ. As (4) plays a central role in
many of the results proved by HP, including the proof of
Theorem 5, we are motivated to find a suitable substitute.
This leads naturally to an investigation of the conditions
under which ω |= B∗i ϕ even when ω /∈ PRi[ω].

Proposition 1(c) tells us that if ϕ = Biψ then B∗i ϕ might
hold even when ω /∈ PRi[ω]. However, this particular way in

which (4) can fail is more a feature of our system than a bug,
and it will not impede our ability to prove Theorem 5 using
our definition of B∗i . A more serious problem is that B∗i ϕ
holds trivially not just when ϕ is valid, but, as Proposition
1(b) shows, whenever ϕ is true at all states in the structure.
Thus, in order for B∗i ϕ to have any bite at all, it is not
enough that ϕ be merely refutable, but ϕ must in fact be
refuted at some state in the structure. This is the first of the
two obstacles mentioned above: if B∗i ϕ is to imply anything
at all, the structure must be “sufficiently rich” as to refute
ϕ, if ϕ is refutable at all.

The second obstacle is perhaps best observed by recalling
that if M is a structure in which Ri is the identity, then
M |= B∗i ϕ⇔ (Biϕ∧ϕ). Since we could very well have ω |=
Biϕ and ω |= ϕ without having ω ∈ PRi[ω], this suggests
that a second type of “richness” property is required, one
which ensures that the relations Ri are “sufficiently large”.

We capture the notion of “sufficiently large” using the no-
tion of a maximal accessibility relation, as defined in Sec-
tion 3. We call a Γ-structure maximal if its accessibility
relations are maximal in this sense.

Proposition 4. Let (Ω, s,
−−→
PR,

−→
R ) be a maximal

Γ-structure. For all ω ∈ Ω, if ω |= B∗i ϕ and there exists
ω′ ∈ Ω such that PRi(ω′) = PRi(ω) and ω′ |= ¬ϕ, then
ω ∈ PRi[ω].

Proof. If not, then conditions (a) and (b) of the defini-
tion given in (3) are satisfied and thus ωRiω

′; this contra-
dicts the assumption that ω |= B∗i ϕ, since ω′ |= ¬ϕ.

Thus, maximal Γ-structures license the implication in (4),
provided that the Γ-structure refutes ϕ at some state ω′ with
PRi(ω′) = PRi(ω). The following definition and lemma
will therefore provide exactly the tools we need to formulate
and prove our version of Theorem 5.

Fix a Γ-structure M = (Ω, s,
−−→
PR,

−→
R ). A state ω ∈ Ω is

called i-rich with respect to ϕ (in M) if there exists ω′ ∈
Ω such that PRi(ω′) = PRi(ω) and (M,ω′) 6|= ϕ. More

generally, given S ⊆ Ω and F ⊆ LCB
∗

n (Γ), say that S is
i-rich with respect to F if for all ω ∈ S and all ϕ ∈ F , ω is
i-rich with respect to ϕ.

Lemma 1. Every finite Γ-structure (Ω, s,
−−→
PR) can be ex-

tended to a finite Γ-structure (Ω′, s′,
−−→
PR′) such that, for each

1 ≤ i ≤ n, Ω is i-rich with respect to {RATj : j 6= i} in

(Ω′, s′,
−−→
PR′).

Proof. See the full paper.

Theorem 6. A strategy σi for player i in a game Γ is
strongly rationalizable if and only if there exists a finite max-
imal Γ-structure M such that

(a) for each 1 ≤ i ≤ n, [[CB∗(RAT )]]M is i-rich with respect
to {RATj : j 6= i}, and

(b) there is some ω ∈ Ω such that si(ω) = σi and (M,ω) |=
CB∗(RAT ).

Proof. Proposition 4 together with Lemma 1 can be
used to change the proof of Theorem 5 given by HP into a
proof of this theorem. We defer details to the full paper.



6. MAXIMALITY AND RICHNESS
REVISTED

Theorem 6, although analogous to Theorem 5 insofar as
it establishes a correspondence between strong rationaliz-
ability and CJBR, loses some of its force due to the addi-
tional requirements of maximality and richness. If the goal
was to build a logic for which consistency of the formula
playi(σi)∧CB∗(RAT ) is equivalent to strong rationalizabil-
ity, then Theorem 6 as it stands has fallen short of that goal.
One approach to getting such a logic would be to get axioms
that force the maximality and i-richess requirements of The-
orem 6. Axiomatizing maximality is accomplished (Theorem
2), but axiomatizing i-richness proves elusive.

But perhaps we do not have to go quite this far. Maximal-
ity and i-richness are sufficient requirements on a Γ-structure
to ensure that it satisfies the implication (4). Although (4)
is a key characteristic of the HP definition of justified belief,
and is used in the HP proof of Theorem 5, a close examina-
tion of the proof reveals that it is not essential. It can be
replaced by a syntactic requirement.

Let A denote the collection of all formulas of the form

CB∗(RAT )⇒ (Bi¬play(−→σ )⇒ ¬play(−→σ )),

where 1 ≤ i ≤ n and −→σ ∈ Σ(Γ). The structure of these
formulas is reminiscent of (1); in fact, each element of A is
implied by a formula of the form (1) (since CB∗(RAT ) im-
plies B∗i (RAT )). Moreover, Proposition 4 guarantees that
any maximal Γ-structure satisfying condition (a) in Theo-
rem 6 validates every formula in A. On the other hand, as
already alluded to, modifying the proof of Theorem 5 yields
the following result.

Proposition 5. If M is a finite Γ-structure such that
M |= A, and (M,ω) |= CB∗(RAT ) ∧ playi(σi), then σi is
strongly rationalizable.

From Proposition 5 together with the preceding discussion
and Theorem 6 we can then deduce:

Theorem 7. A strategy σi for player i in a game Γ is
strongly rationalizable if and only if there exists a finite Γ-
structure M such that M |= A and a state ω satisfying
si(ω) = σi and (M,ω) |= CB∗(RAT ).

This theorem generates several interesting follow-up ques-
tions to which we do not yet know the answers. Does A give
an axiomatization of the class of maximal Γ-structures sat-
isfying condition (a) in Theorem 6? We have argued already
that it is sound, but completeness remains an open question,
despite the suggestive juxtaposition of Theorems 6 and 7. In
either case, what is the relationship between the axioms that
characterize maximality and the collection A? Can axioms
for i-richness alone be teased out of A in some fashion? If
the class of Γ-structures satisfying A turns out to be strictly
smaller than the class considered in Theorem 6, it is natu-
ral to wonder whether we can find an appropriate semantic
characterization of the former class.

7. ACKNOWLEDGEMENTS
The first author would like to thank Anil Nerode for many

illuminating discussions on the topics of this paper. The
first two authors are supported in part by NSF grants ITR-
0325453, IIS-0534064, and IIS-0812045, by AFOSR grants

FA9550-08-1-0438 and FA9550-05-1-0055, and by ARO grant
W911NF-09-1-0281. The third author is supported in part
by NSF CAREER Award CCF-0746990, AFOSR Award
FA9550-08-1-0197, BSF Grant 2006317 and I3P grant
2006CS-001-0000001-02.

References
[1] S. Artemov. Explicit provability and constructive seman-

tics. The Bulletin of Symbolic Logic, 7(1):1–36, 2001.

[2] S. Artemov and E. Nogina. Introducing justification to
epistemic logic. Journal of Logic and Computation,
15(6):1059–1073, 2005.

[3] A. Brandenburger and E. Dekel. Rationalizability and
correlated equilibria. Econometrica, 55:1391–1402,
1987.

[4] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi.
Reasoning About Knowledge. MIT Press, Cambridge,
Mass., 1995. A slightly revised paperback version was
published in 2003.

[5] M. Fitting. A quantified logic of evidence. Annals of Pure
and Applied Logic, 152(1-3):67–83, 2008.

[6] J. Y. Halpern and G. Lakemeyer. Multi-agent only know-
ing. Journal of Logic and Computation, 11(1):41–70,
2001.

[7] J. Y. Halpern and Y. Moses. A guide to completeness and
complexity for modal logics of knowledge and belief.
Artificial Intelligence, 54:319–379, 1992.

[8] J. Y. Halpern and R. Pass. Justified belief and ra-
tionality. Unpublished manuscript; available at
www.cs.cornell.edu/home/halpern/papers/cbr.pdf,
2011.

[9] D. G. Pearce. Rationalizable strategic behavior and the
problem of perfection. Econometrica, 52(4):1029–1050,
1984.

[10] R. W. Rosenthal. Games of perfect information, preda-
tory pricing, and the chain store paradox. Journal of
Economic Theory, 25:92–100, 1982.

[11] T. Tan and S. Werlang. The Bayesian foundation of so-
lution concepts of games. Journal of Economic Theory,
45(45):370–391, 1988.


